加入收藏 | 设为首页 |

三七粉的功效与作用-你知道“八皇后问题”吗?

海外新闻 时间: 浏览:219 次

来历: 新华网


棋类游戏因变化不断、赋有兴趣和益智功用,遭到很多人的喜欢,国际象棋是其间一种。除了休闲文娱,国际象棋中还有一些兴趣常识,如八皇后问题。

提起八皇后问题,咱们就要讲到一个人——高斯。高斯是德国闻名的数学家、物理学家和天文学家。他的兴趣爱好非常广泛,常常在作业之余独自一人下棋。不过,他的下法异乎寻常,其规矩大都与他自己规划的一些数学问题有关。1850年,高斯又给自己提出了一个象棋问题:在国际象棋棋盘孙宇晨,即8*8的棋盘上放8个“皇后”,确保它们之间不能互相进犯,换言之,恣意两后不能坐落棋盘的同一行、同一列或同一对角线上,满意条件的放法有多少种?

其实,八皇后问题是一个经典的回溯算法问题。回溯法也称为打听法,这种办法是指暂时抛弃关于问题规划巨细的约束,并将问题的候选解按某种次序逐个枚举和查验。当发现当时分选解不或许是解时,就挑选下一个候选解。假使当时分选解除了还不满意问题规划要求外,满意一切其他要求时,持续扩展当时分选解的规划,并持续打听三七粉的功效与作用-你知道“八皇后问题”吗?。假设当时分选解满意包含问题规划在内的一切要求时三七粉的功效与作用-你知道“八皇后问题”吗?,该候选解便是问题的一个解。在回溯法中,抛弃当时分选解,寻觅下一个候选解的进程称为回溯三七粉的功效与作用-你知道“八皇后问题”吗?。扩展当时分选解的规划,以持续打听的进程称为向前打三七粉的功效与作用-你知道“八皇后问题”吗?听。换言之,回溯三七粉的功效与作用-你知道“八皇后问题”吗?法便是答应在挑选失利的情况下,体系地去测验完一切或许的挑选。

因此,在剖析八皇后问题时,用回溯法来处理问题是很适宜的:从一个给定的方位动身有多种挑选,但不知道终究三七粉的功效与作用-你知道“八皇后问题”吗?哪种挑选才干处理问题。因为每一个皇后摆放的方位都遭到前一个皇后落子方位的约束,所以越是最早落子的皇后,可挑选的方位就越多,越后放的皇后,可挑选的规模就越小。当咱们挑选选用回溯的办法处理八皇后问题时,先在棋盘上放上第1个皇后,然后再放上第2个,并确保第二个皇后和第一个不互相进犯。再接着放上第3个皇后,并满意她与前两个皇后都不会彼此进犯的条件,依此类推,直到一切的皇后都摆放上去。假设第7个皇后放上后,第8个皇后现已没有安全的方位了,则要试着调整第7个皇后的方位,并再次调整第8个皇后的方位,看是否有安全的方位;假设第7个皇后的方位都现已测验过而第8个皇后还没有安全的方位,则应试着调整第6个皇后的方位,从头调整第7、第8个皇后的方位。依此类推,并且有或许倒退到调整第1个皇后的方位。

所以,选用回溯的办法来处理八皇后问题,看似完成方式非常简略,实际上这一进程的作业量非常巨大,尤其是当八皇后问题扩展到更多的时分。


本著作为“科普我国-科学原理一点通”原创,转载时务请注明出处。